MIDTERM: MMATH LINEAR ALGEBRA

Date: 13th September 2019

The Total points is 108 and the maximum you can score is 100 points.

All vector spaces considered below are assumed to be finite dimensional.

- (1) (7+7+7+7=28 points) Answer the following multiple choice questions about each of them. Write all correct options. No justification needed. No partial credit will be given if a correct option is missing or an incorrect option is written.
 - (a) Let A and B be two distinct bases of a vector space V. Which of the following statements are true?
 - (i) $A \cup B$ is a generating set.
 - (ii) $A \cup B$ is a linearly independent set.
 - (iii) A and B have same number of elements.
 - (iv) If $C \subset A \cup B$ then C is either a linearly independent set or a generating set.
 - (b) Let $\phi: V \to W$ be a linear map of vector spaces. Let A be the matrix of ϕ with respect to the bases $(\mathcal{B}, \mathcal{C})$ of V and W respectively. Which of the following are true?
 - (i) $rank(A) = dim(ker(\phi))$
 - (ii) $rank(A) = dim(im(\phi))$
 - (iii) $\operatorname{rank}(A) + \dim(\ker(\phi)) = \dim(V)$
 - (iv) $\operatorname{rank}(A) + \dim(\operatorname{im}(\phi)) = \dim(W)$
 - (c) Let V and W be vector spaces. Let ϕ and ψ be linear operators V and W respectively. Consider the linear operator θ on $V \oplus W$ given by $\theta(v,w) = (\phi(v),\psi(w))$ for $v \in V$ and $w \in W$. Which of the following are true?
 - (i) $det(\theta) = det(\phi) det(\psi)$
 - (ii) $tr(\theta) = tr(\phi) + tr(\psi)$
 - (iii) The minimal polynomial of θ is the product of the minimal polynomials of ϕ and ψ .
 - (iv) The characteristic polynomial of θ is the product of the characteristic polynomials of ϕ and ψ .
 - (d) Let A and B be two hermitian matrices. Which of the following statements are true?
 - (i) AB is hermitian.
 - (ii) A^2 is hermitian.
 - (iii) A + B is hermitian.
 - (iv) e^A is hermitian.

- (2) (8+8+8+8=40 points) Prove or disprove (using a counterexample) the following statements.
 - (a) Let A be a square matrix of rank 1. Then $A = xy^T$ for some coloumn vectors x and y.
 - (b) Every real square matrix is similar to a real upper-triangular matrix.
 - (c) Every real symmetric matrix is similar to a real diagonal matrix.
 - (d) Let $(V, \langle \cdot, \cdot \rangle)$ be a vector space together with a symmetric bilinear form. Let A be the matrix of the bilinear form with respect to some basis. If $\det(A) = 1$ then A is positive definite.
 - (e) Let $X=(x_1,x_2)$ and $Y=(y_1,y_2)$ be two vectors in \mathbb{C}^2 . The function $\langle X,Y\rangle=x_1y_1+ix_1y_2-ix_2y_1+x_2y_2$ from \mathbb{C}^2 to \mathbb{C} is a hermitian form.
- (3) (10 points) Let A be a real orthogonal matrix of determinant -1. Show that -1 is an eigenvalue of A.
- (4) (8+10+12=30 points) Define hermitian space. Let T be a linear operator on a hermitian space V. Define adjoint of T. When is a linear operator called normal? Show that $T-T^*$ is diagonalizable. Also show that if the dimension of V as a \mathbb{C} -vector space is even then the determinant of $T-T^*$ is a real number.